1 Probability

1.1 Probability spaces

We will briefly look at the definition of a probability space, probability measures,
conditional probability and independence of probability events.

Definition 1.1. The set of all possible outcomes of an experiment is called the sample
space and is denoted by 2.

Definition 1.2. A collection F of subsets of the sample space € is called a o-algebra
(or a o-field) if it satisfies the following conditions:

1. The empty set, denoted by (), is an element of F. We write ) € F.
2. If A € F then A° € F.

3. If the countable collection of sets Ay, Asg, ... is in F (we write by {A;}ien € F)
then
U A, e F.
€N

Remark 1.3. 1. The smallest possible o-algebra is {0}, Q}.
2. If A C Q then {0, A, A¢,Q} is a o-algebra.

3. The collection of all subsets of €2 is a o-algebra. Sadly if 2 is uncountable then
it is often not possible to define a probability measure on this o-algebra and in
this case it is not of much practical use.

We already mentioned probability measure, but what is it exactly?

Definition 1.4. A probability measure P on (2, F) is a function P : F — [0,1]
satisfying the following conditions:

1. P(0) =0 and P(Q2) = 1.
2. If {A;}ien is a collection of disjoint elements of F in the sense that A;NA; =)
whenever i #£ j then
P (U Ai> => P(4).
1€N 1€N

The triple (2, F,P) comprising a set 2 a o-algebra F and a probability measure P is
called a probability space.

To check your understanding you may want to answer the following questions.

1. Let (2, F,P) be some probability space. Is it possible that there is A € F such
that P(A) =07

2. Let {A;}ien be a collection of disjoint elements of F. Is there ¢ € R such that

> P(A) <e?

1€EN



Definition 1.5. If P(B) > 0 then the conditional probability that A occurs given
that B occurs is defined to be

P(AN B)

P(AIB) = —5 5

Definition 1.6. Events A and B are called independent if P(AN B) = P(A)P(B).

1.2 Random variables

Let a probability space (2, F,P) be given.

Definition 1.7. Let G be a collection of subsets of Q2. The intersection of all o-
algebras contained in F that themselves contain G is called the o-algebra generated by
G and we will denote it by o(G). We can write

o(G) := ﬂ {H CF:H isaoc-algebra and G C H}.

We take d € N indicating the dimension of the space that our random variables take
values in. Note that it is possible to define random variables taking values in more
general spaces than R? but we shall not need that.

Definition 1.8. The Borel o-algebra on RY is the o-algebra generated by the collection
of all open sets in RY. We will denote it by B(R?).

Since we know that the complement of an open set is a closed set it is not hard to
see that this is equivalent to saying that the Borel o-algebra is generated by all closed
sets in R?. Furthermore, this definition extends to any metric spaces.

We can finally define random variables:

Definition 1.9. A random variable is a function X : Q — R¢ with the property that
X YB)={weQ:X(w)eB}eF

for any B € B(RY).

We say that X is F-measurable.

Here we used the pre-image of set a B under X and denoted it by X ~1(B). It is
important to note that this has nothing to do with the inverse of a function. The
function inverse is only defined for for one-to-one and onto functions, while the pre-
image of a set under X always exists.

For any real valued random variable we can define its distribution function.

Definition 1.10. The distribution function of a random wvariable X : Q — R is the
function Fx : R — [0,1] given by

Fx(z) =P(X < x).

We now look at two special types of random variables:

Definition 1.11. Let S C R? be a set containing only countably many elements. A
random variable X : Q@ — S is then called discrete.



Definition 1.12. The random variable X :  — R is called continuous if there is a
function fx : R — [0,00) such that its distribution function can be expressed, for any
z €R, as

Fy(z) = / Fx(w)du.
The function fx is called the probability density function.

The normal distribution. The probability density function of normal distribution
with mean  and variance o is given by

fx (@) = L exp (—W) :
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Note that there are random variables that are neither continuous nor discrete. Further
note that saying that a random variable is continuous is not related to the continuity
of the function X, it is instead related to the continuity of the distribution function
of the random variable X.

We will now turn to what it means for random variables to be independent. It may be
useful to recall that we call two events A and B independent if P(ANB) = P(A)P(B).

Definition 1.13. The o-algebra generated by a random variable X : Q — R is the
collection of all pre-images of elements of the Borel o-algebra B(R?) and is denoted
by o(X). We can write

o(X) == X" Y(BR?)) := {X—l(B) Be B(Rd)} .

While in the definition we called the collection of sets o(X) a o-algebra it is perhaps
not immediately obvious that this collection is indeed a o-algebra. It may be a good
exercise to show that this is indeed the case.

Definition 1.14. Two o-algebras Fi and Fo over the same sample space £ are called
independent if for all A € Fy and B € Fo the events A and B are independent.

Two random variables X : @ — R* and Y : Q@ — R? are called independent if the
o-algebras o(X) and o(Y') are independent.

We will return to independence briefly once we have defined expectation, variance and
covariance.

1.3 Integration and the Expectation Operator

Let a probability space (2, F,P) be given. We would like to define the integral with
respect to a probability measure. To this end, we first define the integral for special
type of random variables.

Definition 1.15. A random variable X : Q — R is called simple if there exist real
numbers x1,To,...,xN and elements of F denoted A1, Ao, ..., AN such that

N
X(w) =) apla,(w),
k=1

where we have used the indicator function of an event defined, for any event B, as

1 ifweB,
Lp(w) = { 0 otherwise.



So simple functions can only take certain fixed values on certain sets. In a sense they
are like they are like discrete random variables that you are no doubt familiar with.
We all know that for a discre random variable Y, its expectation is

ZykP = Yk)-

We define the expectation for simple random variables analogously.

Definition 1.16. If X : Q — R is a simple random variable then we can define its
integral over § and thus its expectation as

/X YdP(w ZkuP’ (Ag).

If B € F and X is a simple random variable then we can easily check that X1p is
also a simple random variable.

Definition 1.17. If X : Q — R? is a simple random variable then we can define its
integral over B € F as

/X )dP(w /X )1 5(w)dP(w).

From the definition we immediately see that

1. If X is a simple random variable then

[EX] < E(]X]).

2. If a, B € R then for any two simple random variables X and Y
E(aX 4+ 8Y) = aEX + SEY

(and similarly for the notation with integrals). This is referred to as linearity.

Now we wish to define the (Lebesgue) integral for any random variable X : Q — R.
We start by noting that we can split X into its positive and negative parts X+ and
X~ with Xt := XT x>0 >0 and X~ := —XT x0 > 0. Then X = X+ — X~. So
it is enough to first define the integral for X > 0. This is done as follows:

Definition 1.18. If X : Q@ — R is non-negative, i.e. X > 0 then we define the
expectation of X as

EX ::/QX(w)d]P’(w) = sup /Qﬁ(w)d]P’(w).

E<X and & simple
Note that it may happen that EX is infinite.
For a general X : 2 — R we now define
EX :=EXt -EX,

provided that either EX™ is finite (in which case EX is minus infinity) or that EX~
is finite (in which case EX is plus infinity). If both EXT and EX ™ are infinite then
the expectation is not defined.



Definition 1.19. We say X : Q@ — R is integrable if E(|X|) < oo and square inte-
grable if E(]X|?) < oc.

If X is integrable then we say its mean is EX.

If X is square integrable we say its variance is Var(X) := E(X?) — (EX)?. Exercise:
show that Var(X) =E ((X — EX)?).

If X and Y are two square integrable random variables then their covariance is

Cov(X,Y) =E((X —EX)(Y — EY)).

If X and Y are independent then E(XY') = 0 and hence Cov(X,Y) = 0. The converse
is not true. Consider e.g. X normally distributed with mean 0 and variance 1 and
Y := X2—1. Clearly X and Y are not independent but E(XY) = 0 and (EX)(EY) =0
and so Cov(X,Y) = 0.

Lemma 1.20. Let X be an integrable random variable. Let F'x denote the distribution
of X. Let g : R — R be Borel measurable. Then

wan:/mwﬁww.
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Assume further that X is a continuous random variable with density fx. Then

E@@»=/M@k@ﬂa

R

1.4 Conditional Expectation

Let (Q, F,P) be given.

Definition 1.21. Let X be an integrable random variable. If G C F is a o-algebra
then there exists a unique G measurable random variable Z such that

VG eg /XdIP’:/ZdIP’.
G G

We say that Z is the conditional expectation of X given G and write E(X|G) := Z.

Of course it has to be proved that this new random variable exists, is unique and
is G measurable for the definition to make sense. Here are some further important
properties which we present without proof.

Theorem 1.22 (Properties of conditional expectations). Let X and Y be random
variables. Let G C F.

1. For any o, B € R
E(aX + BY|G) = aE(X|G) + BE(Y|G).
This is called linearity.
2. Let Gy C Go C F be g-algebras. Then
E(X|G1) = E(E(X[G2)|G1)-
This is called the tower property. A special case is EX = E(E(X|G)).



3. If X is G measurable then E(X|G) = X.
4. If 0(X) is independent of G then E(X|G) = EX.
5. If Y is G measurable then E(XY|G) = YE(X|G).

Definition 1.23. Let X and Y be two random variables. The conditional expecta-
tion of X given Y is defined as E(X|Y) := E(X|o(Y)), that is, it is the conditional
expectation of X given the o-algebra generated by Y .



